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A special case of the Manin-Mumford Conjecture

The Manin-Mumford Conjecture asks that only special subvarieties
of semiabelian varieties S may contain a Zariski dense set of
torsion points. In this context, special means that the subvariety is
a translate of an algebraic subgroup of S by a torsion point.

In the case S = G2
m, the statement is much simpler.

Theorem
(Lang) If there exist infinitely many points (x , y) on a plane curve
C, where both x and y are roots of unity, then the equation of C
(embedded in G2

m) is of the form XmY n = α, where m, n ∈ Z and
α is a root of unity.
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A reformulation

Lang’s Theorem yields the following result.

Theorem
Let F1,F2 ∈ C(λ). If there exist infinitely many λ ∈ C such that
both F1(λ) and F2(λ) are roots of unity, then F1 and F2 are
multiplicatively dependent, i.e., there exist m, n ∈ Z (not both
equal to 0) such that Fm

1 F n
2 = 1.

Furthermore, under the above hypothesis, we conclude that for
each λ ∈ C, F1(λ) is a root of unity if and only if F2(λ) is a root
of unity. Versions of the above theorem hold in higher dimensions,
where sets with “infinitely many points” are replaced by “Zariski
dense subsets”.
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A family of elliptic curves

Consider the 1-parameter Legendre family of elliptic curves Eλ

given by the equation

y2 = x(x − 1)(x − λ),

indexed by all λ ∈ C.

Let Pλ ∈ Eλ(C) be the point on Eλ with
x-coordinate equal to 2, and let Qλ be the point on Eλ with
x-coordinate 3, i.e.,

Pλ =
(
2,
√
2(2− λ)

)
and

Qλ =
(
3,
√

6(3− λ)
)
.

Alternatively, we can view Pλ and Qλ as sections on the above
elliptic surface.
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Eλ : y 2 = x(x − 1)(x − λ)

Pλ = (2,
√

2(2− λ)); Qλ = (3,
√

6(3− λ))

Question: Are there infinitely many λ ∈ C such that both Pλ and
Qλ are torsion points on Eλ?

The question in not trivial since one can easily check that for Pλ

(and same for Qλ) there exist infinitely many λ ∈ C such that Pλ

(resp. Qλ) is torsion for Eλ (simply solve the equation [n]Pλ = 0
for various n ∈ N).
On the other hand, neither Pλ nor Qλ is a torsion section on the
elliptic surface. One can see this by noting that P3 = (2, i

√
2) is

not torsion on E3:
y2 = x(x − 1)(x − 3)

and similarly Q2 = (3,
√
6) is not torsion on E2:

y2 = x(x − 1)(x − 2).
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Also, the two sections Pλ and Qλ are linearly independent over Z,
i.e., there exist no nonzero m, n ∈ Z such that

mPλ + nQλ = 0,

since otherwise we would get that Pλ is torsion for Eλ if and only if
Qλ is torsion for Eλ. That would be impossible since P2 = (2, 0) is
torsion for E2:

y2 = x(x − 1)(x − 2)

while Q2 = (3,
√
6) is not torsion for E2.

So, there exists a countable set T (P) of numbers λ ∈ C such that
Pλ is torsion for Eλ, and another countable set T (Q) containing all
λ ∈ C such that Qλ is torsion for Eλ. On the other hand, it seems
that the two sets shouldn’t have many elements in common. Is this
enough evidence to convince us that T (P) ∩ T (Q) is a finite set?
Yes.
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Theorem
(Masser, Zannier) There exist at most finitely many λ ∈ C such
that both Pλ and Qλ are torsion points on the elliptic curve Eλ.

Masser and Zannier extended their original result to the case of
arbitrary sections Pλ and Qλ as long as they are linearly
independent over Z.
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A dynamical reformulation

Consider the 1-parameter of rational maps

fλ(x) =
(x2 − λ)2

4x(x − 1)(x − λ)
.

Then for each λ ∈ C, fλ(2) is the x-coordinate of the point [2]Pλ,
where Pλ ∈ Eλ(C) is the point on Eλ with x-coordinate equal to 2.
Similarly, fλ(3) is the x-coordinate of the point [2]Qλ, where
Qλ ∈ Eλ(C) is the point on Eλ with x-coordinate equal to 3. The
map fλ is the Lattès map induced by the multiplication-by-2-map
on Eλ.
Therefore, 2 is preperiodic for fλ if and only if the point Pλ is a
torsion point for the elliptic curve Eλ. Hence, Masser-Zannier
result is equivalent with the fact that there are at most finitely
many λ ∈ C such that both 2 and 3 are preperiodic under fλ. The
most general theorem proved by Masser and Zannier in this
direction is the following.
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Theorem
(Masser-Zannier) With the above notation, let a(λ),b(λ) ∈ C(λ)
be rational functions with the property that there exist infinitely
many λ ∈ C such that both a(λ) and b(λ) are preperiodic under
the action of fλ. Then the points Pλ and Qλ with x-coordinates
a(λ), respectively b(λ) are linearly dependent over Z on the
generic fiber of the elliptic surface.

In particular, the conclusion may be reformulated as follows:

I the point (Pλ,Qλ) lives in a 1-dimensional algebraic subgroup
(given by the equation [m]P + [n]Q = 0) of the abelian
surface Eλ × Eλ over C(λ); or

I the point (a,b) ∈ (P1 × P1) lives on a curve which is
preperiodic under the action of (f, f), where f is the Lattés
map induced by the multiplication-by-2-map on the generic
fiber of Eλ.

It is natural to ask the same question for an arbitrary family of
rational maps fλ.
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Conjecture

(Ghioca, Hsia, Tucker) Let fλ : P1 −→ P1 be a 1-parameter family
of rational maps defined over C of degree greater than 1. Let
a(λ),b(λ) ∈ P1(C(λ)) such that there exist infinitely many λ ∈ C
such that both a(λ) and b(λ) are preperiodic for fλ. Then at least
one of the following conditions holds:

(1) a(λ) is preperiodic for fλ for all λ;

(2) b(λ) is preperiodic for fλ for all λ;

(3) a(λ) is preperiodic for fλ if and only if b(λ) is preperiodic for
fλ.

The above conditions (1)-(3) are the correct analogue of the
Masser-Zannier conclusion that the points Pλ and Qλ are linearly
dependent over Z.
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A polynomial family and constant starting points

We could focus first on the case fλ is totally ramified at infinity,
i.e., we’re dealing with a family of polynomials, and in addition a
and b are constants. This is already a difficult question.

A very
important special case was proved by Baker and DeMarco (their
result also motivated our previous conjecture).

Theorem
(Baker, DeMarco) Let a, b ∈ C, and let d be an integer greater
than 1. If there exist infinitely many λ ∈ C such that both a and b
are preperiodic for xd + λ, then ad = bd .

It is easy to see that neither a nor b is preperiodic for all the maps
xd + λ. So, according to the previous conjecture, one expects that
the conclusion be that a is preperiodic for xd + λ exactly when b is
preperiodic for xd + λ. Baker and DeMarco proved the more
precise statement that after just one iteration under fλ, both a and
b are in the same point, and thus they are preperiodic for the same
values of λ.
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An example
Consider the family of polynomials
fλ(x) = x3 − λx2 + (λ2 − 1)x + λ indexed by all λ ∈ C. Let
a(λ) = λ and b(λ) = λ3 − 1.
Question: Are there infinitely many λ ∈ C such that both a(λ)
and b(λ) are preperiodic for the same fλ?

For example, λ = 0 satisfies the above conditions since then

I f0(x) = x3 − x ;

I a(0) = 0 and b(0) = −1,

and f0(0) = 0 while f0(−1) = 0.
Also λ = 1 works since then

I f1(x) = x3 − x2 + 1;

I a(1) = 1 and b(1) = 0,

and f1(1) = 1 while f1(0) = 1.
Are there infinitely many more such λ’s? Note that individually,
there exist infinitely many λ ∈ C such that either a(λ) or b(λ) are
preperiodic for fλ (simply solve the equation f nλ (a(λ)) = a(λ) for
varying n ∈ N).
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On the other hand, λ = −1 does not work since

I f−1(x) = x3 + x2 − 1;

I a(−1) = −1 and b(−1) = −2,

and f−1(−1) = −1, while

f−1(−2) = −5; f 2−1(−2) = −101; . . . . . .

So, it’s not true that a(λ) is preperiodic exactly when b(λ) is
preperiodic, and it’s not true that b(λ) is always preperiodic under
fλ. Nor it is true that a(λ) is always preperiodic, as it’s shown by
the case λ = 2. In that case,

I f2(x) = x3 − 2x2 + 3x + 2 and a(2) = 2, while

I f2(2) = 8, f 22 (2) = 410, . . . . . . .

The above two examples coupled with our conjecture suggest that
there should only be finitely many λ ∈ C such that both a(λ) and
b(λ) are preperiodic for fλ since all three conditions (1)-(3) from
our conjecture fail in this example. This follows from the next
result.
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Theorem
(Ghioca, Hsia, Tucker) Let d be an integer greater than 1, let
cd ∈ C∗, let cd−1, . . . , c0 ∈ C[λ], and let

fλ(x) = cdx
d + cd−1(λ)x

d−1 + · · ·+ c1(λ)x + c0(λ).

Let a,b ∈ C[λ] such that

I deg(a) = deg(b) ≥ d ·max{deg(c0), . . . , deg(cd−1)};
I a and b have the same leading coefficient.

If there exist infinitely many λ ∈ C such that both a(λ) and b(λ)
are preperiodic for fλ, then a = b.

In particular, we get that a(λ) is preperiodic if and only if b(λ) is
preperiodic.
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Previous example:

fλ(x) = x3 − λx2 + (λ2 − 1)x + λ

a(λ) := f 2λ (λ) = fλ(λ
3) = λ9 − λ7 + λ5 − λ3 + λ

b(λ) := fλ(λ
3 − 1) = λ9 − λ7 − 3λ6 + λ5 + 2λ4 + 2λ3 − λ2

satisfy the hypotheses of our theorem. So, there are at most
finitely many λ ∈ C such that both a(λ) and b(λ) are preperiodic
for fλ (and thus there are finitely many λ ∈ C such that both λ
and λ3 − 1 are preperiodic under the action of fλ).
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Baker-DeMarco’s theorem

Similarly, Baker-Demarco’s result is a corollary of the above
theorem. Indeed, if a, b ∈ C, d is an integer greater than 1, and

fλ(x) := xd + λ

and
a(λ) := f 2λ (a) = (λ+ ad)d + λ

and
b(λ) := f 2λ (b) = (λ+ bd)d + λ,

then fλ, a and b satisfy the hypotheses of the above theorem.

So,
if there exist infinitely many λ ∈ C such that a(λ) and b(λ) (or
equivalently, a and b) are preperiodic for fλ, then a = b, i.e.,
ad = bd , as desired.
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Another application

In the previous theorem we may consider the case that each ci is
constant, i.e., the family of polynomials fλ is constant (equal to f ,
say). In this case we have the following interesting consequence.

Corollary

Let f ∈ C[x ] be a polynomial of degree larger than 1. Let
a,b ∈ C[λ] be two polynomials of same degree and same leading
coefficient. If there exist infinitely many λ ∈ C such that both
a(λ) and b(λ) are preperiodic for f , then a = b.
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A geometric reformulation of the previous statement

Corollary

Let f be a polynomial of degree larger than 1. Let V ⊂ A2 be a
curve parametrized by (a(λ),b(λ)) for λ ∈ C, where a,b ∈ C[λ]
are two polynomials of same degree and same leading coefficient.
If there exist infinitely many points on V (C) which are preperiodic
under the map (x , y) 7→ (f (x), f (y)) on A2, then V is the diagonal
line in A2 (and thus it is itself preperiodic).

This last result is a special case of the Dynamical Manin-Mumford
Conjecture made by Zhang.
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Observations

If the conditions

I deg(a) = deg(b) ≥ d ·max{deg(c0), . . . , deg(cd−1)};
I a and b have the same leading coefficient.

are not met, then we cannot expect that a = b.

For example, if

fλ is odd, and b = −a,

then a(λ) is preperiodic if and only if b(λ) is preperiodic.
On the other hand, if b(λ) = fλ(a(λ)), then again a(λ) is
preperiodic if and only if b(λ) is preperiodic.
So, without extra assumptions on a and b it is difficult to prove
what are the precise relations between a and b.
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Theorem
Let d be an integer greater than 1, let cd ∈ C∗, let
cd−1, . . . , c0 ∈ C[λ], and let

fλ(x) = cdx
d + cd−1(λ)x

d−1 + · · ·+ c1(λ)x + c0(λ).

Let a,b ∈ C[λ] such that

1. deg(a) = deg(b) ≥ d ·max{deg(c0), . . . , deg(cd−1)};
2. a and b have the same leading coefficient.

If there exist infinitely many λ ∈ C such that both a(λ) and b(λ)
are preperiodic for fλ, then a = b.

In order to prove the result, first we focus on the algebraic case:
a,b ∈ Q̄[λ] and ci ∈ Q̄[λ]. Using the technique of specializations,
we can infer the general result from the algebraic case.

Also, we
may assume fλ is monic (i.e., cd = 1), at the expense of replacing
the entire family by a suitable conjugate: µ−1 ◦ fλ ◦ µ, where
µ(z) = Az for a suitable number A. Secondly, if the family fλ is
constant, then we may assume deg(a) = deg(b) ≥ 1 since
otherwise the conclusion is vacuously true.
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Ideea for our proof

Now, we go back to the Masser-Zannier problem for the Legendre
family of elliptic curves Eλ. They proved that for two sections Pλ

and Qλ, if there exist infinitely many λ such that both Pλ and Qλ

are torsion points for Eλ, then there exist (nonzero) m, n ∈ Z such
that [m]Pλ = [n]Qλ.

Letting ĥλ be the canonical height for the
elliptic curve Eλ, we would then have

ĥλ(Pλ)/ĥλ(Qλ) = n2/m2

is constant on all elliptic fibers. Furthermore, even the local
canonical heights of the two points have constant quotient on all
ellliptic fibers.
In order to achieve our goal we use the method introduced by
Baker and DeMarco.
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Idea of proof (continued)

We can define the canonical height for a(λ) and b(λ) under the
action of fλ for any λ ∈ Q̄ as

ĥλ(a(λ)) = lim
n→∞

h(f nλ (a(λ)))

dn
,

where d = deg(fλ) and h(·) is the naive Weil height. So, we may
wonder if we could prove that ĥλ(a(λ))/ĥλ(b(λ)) is constant for
all λ ∈ Q̄.

Imagine we can prove the (seemingly) weaker statement that the
local canonical heights of a(λ) and b(λ) with respect to the
archimedean valuation given by a fixed embedding of Q̄ into C
have constant quotient for all λ ∈ Q̄. This fact follows from the
equidistribution theorem proved by Baker and Rumely on
Berkovich spaces.
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More precisely, for each c ∈ Q̄[λ] of degree

m ≥ d ·max{deg(c0), . . . , deg(cd−1)}

we let

Gλ(c(λ)) = lim
n→∞

log+ |f nλ (c(λ))|
mdn

,

where log+(z) := logmax{1, z} for any positive real number z .

Baker-Rumely equidistribution theorem yields that

Gλ(a(λ)) = Gλ(b(λ)) for all λ ∈ Q̄.

This last equality will be sufficient for us to conclude that a = b.
But first we need to understand better the (Green) function
Gc : C −→ R≥0 given by Gc(λ) = Gλ(c(λ)) for any given
c ∈ Q̄[λ].
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Bötcher’s Uniformization Theorem
For any (monic) polynomial g ∈ C[x ] of degree d ≥ 2, there exists
a real number R ≥ 1 and an analytic map Φ : UR −→ UR , where

UR = {z ∈ C : |z | > R}

satisfying the following two conditions:

(i) Φ is univalent on UR and at ∞,

Φ(z) = z + O

(
1

z

)
;

(ii) for all z ∈ UR we have

Φ(g(z)) = Φ(z)d .

More precisely,

Φ(z) = z ·
∞∏
n=0

(
gn+1(z)

gn(z)d

) 1
dn+1
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The Green’s Function

Then for z ∈ UR , we know that g(z) ∈ UR and thus

lim
n→∞

log |gn(z)|
dn

= lim
n→∞

log |Φ(gn(z))|
dn

= lim
n→∞

log
∣∣Φ(z)dn∣∣
dn

= log |Φ(z)|.
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The function Gc

We recall that

Gc(λ) = lim
n→∞

log+ |f nλ (c(λ))|
mdn

where m = deg(c) ≥ d ·max{deg(c0), . . . , deg(cd−1)}.

We denote
by Φλ the corresponding uniformizing map at ∞ for each fλ; also
we let Rλ be the radius of convergence for each Φλ. We can prove
that there exists a positive real number M such that for all λ ∈ C
satisfying |λ| > M,

c(λ) ∈ URλ
.

This allows us to conclude that, if |λ| > M then

Gc(λ)

= lim
n→∞

log+ |f nλ (c(λ))|
mdn

=
log |Φλ(c(λ))|

m
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The function G (continued)

We note that

Φλ(c(λ)) = c(λ) ·
∞∏
n=0

(
f n+1
λ (c(λ))

f nλ (c(λ))
d

) 1
dn+1

So, using that the degree m of c is larger than the degrees of the
ci ’s, and letting q be the leading coefficient of c, we conclude that
λ 7→ Φλ(fλ(c)) has the following properties:

(i) it’s an analytic function on UM = {λ ∈ C : |λ| > M}.
(ii) at infinity, Φλ(c(λ)) = qλm + O(λm−1).

(iii) Gc(λ) =
log |Φλ(fλ(c))|

m .
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Conclusion of our proof

Using the existence of infinitely many λ such that both a(λ) and
b(λ) are preperiodic for fλ, Baker-Rumely equidistribution theorem
yields

Ga(λ) = Gb(λ) for all λ ∈ Q̄.

So, for λ ∈ Q̄ satfisfying |λ| > M we conclude that

Ga(λ) =
log |Φλ(a(λ))|

deg(a)
=

log |Φλ(b(λ))|
deg(b)

= Gb(λ).

and thus, using that deg(a) = deg(b) we have
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|Φλ(a(λ))| = |Φλ(b(λ))| for λ ∈ Q̄ s.t. |λ| > M.

By continuity we obtain that

|Φλ(a(λ))| = |Φλ(b(λ))| for λ ∈ C s.t. |λ| > M,

and by the Open Mapping Theorem we conclude that there exists
u ∈ C of absolute value equal to 1 such that

Φλ(a(λ)) = u · Φλ(b(λ)) if |λ| > M.

Since both Φλ(a(λ)) and Φλ(b(λ)) have the expansion
qλm + O(λm−1) at infinity, we get that u = 1; therefore

Φλ(a(λ)) = Φλ(b(λ)) if |λ| > M.

Finally, using the fact that Φλ is univalent on URλ
and both a(λ)

and b(λ) are in URλ
if |λ| > M, we obtain that

a(λ) = b(λ).
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Remarks

Assume now that conditions (1)-(2) in our theorem are not met.

Theorem
Let d be an integer greater than 1, let cd ∈ C∗, let
cd−1, . . . , c0 ∈ C[λ], and let

fλ(x) = cdx
d + cd−1(λ)x

d−1 + · · ·+ c1(λ)x + c0(λ).

Let a,b ∈ C[λ] such that

1. deg(a) = deg(b) ≥ d ·max{deg(c0), . . . , deg(cd−1)};
2. a and b have the same leading coefficient.

If there exist infinitely many λ ∈ C such that both a(λ) and b(λ)
are preperiodic for fλ, then a = b.
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Furthermore, assume fλ is not a constant family. Then because fλ
is a polynomial family and a,b ∈ C[λ] then a (or b) is preperiodic
if and only if

degλ(f
n
λ (a(λ))) is unbounded as n → ∞.

The reason for this is that on the generic fiber, a (or b) is
preperiodic if and only if its height with respect to f = fλ is 0 (by a
theorem of Benedetto for non-isotrivial polynomial actions).
Moreover, the only place of C(λ) for which the local height of a
(of b) might be nonzero is the place at infinity, since the
coefficients ci of f and also a (and b) are integral everywhere else.
And at the infinity place, the local height of a (or b) with respect
to f is nonzero if and only if the degrees in λ of the iterates of a
(resp. b) under f grow unbounded.
Assume neither a nor b is identically preperiodic for our family of
polynomials. Then the degrees in λ of the iterates of a and b
under f are unbounded.
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Thus we may assume there exists k ∈ N such that

ma := degλ(f
k
λ (a(λ))) > d ·max{deg(c0), . . . , deg(cd−1)}

and

mb := degλ(f
k
λ (b(λ))) > d ·max{deg(c0), . . . , deg(cd−1)}

So, without loss of generality, we may replace a and b by their
k-th iterate under fλ.

Then the exact same reasoning as above
would still yield that if there exist infinitely many λ such that both
a(λ) and b(λ) are preperiodic under fλ, then the two functions

Ga(λ) := lim
n→∞

log+ |f nλ (a(λ))|
madn

=
log |Φλ(a(λ))|

ma

and

Gb(λ) := lim
n→∞

log+ |f nλ (b(λ))|
mbdn

=
log |Φλ(b(λ))|

mb

are equal.
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So, again we can find a complex number u of absolute value equal
to 1 such that

Φλ(a(λ))
mb = u · Φλ(b(λ))

ma .

Just as before we get that

Φλ(a(λ)) = qaλ
ma + O

(
qma−1

)
and

Φλ(b(λ)) = qbλ
mb + O

(
qmb−1

)
.

However this is not enough information to derive an exact relation
between a and b.
It seems that even knowing that ma = mb would not be enough
(unless we also know that qa = qb).
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Concluding remarks

Assume now in addition that fλ, a and b are all defined over Q̄.
Then the equidistribution theorem of Baker and Rumely still yields
that

ĥλ(a(λ))

deg(a)
=

ĥλ(b(λ))

deg(b)

Therefore for each λ ∈ Q̄, we obtain that

ĥλ(a(λ)) = 0 if and only if ĥλ(b(λ)) = 0.

Over a number field, a point is preperiodic if and only if its
canonical height equals 0; so

a(λ) if preperiodic if and only if b(λ) is preperiodic.
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ĥλ(a(λ))

deg(a)
=
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Conclusion

Therefore, for non-constant families f = fλ of polynomials defined
over Q̄, and for any a,b ∈ Q̄[λ] we proved that if there exist
infinitely many λ ∈ Q̄ such that both a(λ) and b(λ) are
preperiodic for fλ, then

I either a or b is preperiodic for f; or

I a(λ) is preperiodic for fλ if and only if b(λ) is preperiodic for
fλ.
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The hard part

The above argument was all based on the strong assumption that
the local canonical heights of the two starting points under the
maps fλ are proportional. This assumption happens to be true, but
it is very difficult to prove it. Below we will only sketch our proof.

We let K be a number field containing all coefficients of a, b and
of fλ. (It is easy to see that if a or b is preperiodic under fλ, then
λ ∈ K = Q̄.) For each place v of K (both archimedean and
nonarchimedean) we let Cv be the completion of the algebraic
closure of the completion of K at the place v (strictly speaking for
nonarchimedean places v , we need to replace Cv with the
corresponding Berkovich space since the former is not locally
compact).
Next we construct the generalized Mandelbrot sets Ma,v and Mb,v .
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The Generalized Mandelbrot sets

With the above notation, and for any c ∈ K [λ] of sufficiently high
degree, we define Mc,v to be the set of all λ ∈ Cv such that the
sequence {|f nλ (c(λ))|v}n∈N is bounded. Alternatively, this is
equivalent with asking that the local canonical height

lim
n→∞

log+ |f nλ (c(λ))|v
dn

equals 0.

Clearly, if c(λ) is preperiodic under fλ, then λ ∈ Mc,v for all places
v .
The first important property of these generalized Mandelbrot sets
is that they are compact.
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The Green function of a compact subset of Cv

Let E be a compact subset of Cv . The logarithmic capacity
γ(E ) = e−V (E) and the Green’s function GE of E (relative to ∞)
can be defined where V (E ) is the infimum of the energy integral
with respect to all possible probability measures supported on E .

More precisely,

V (E ) = inf
µ

∫ ∫
E×E

− log |x − y |vdµ(x)dµ(y),

where the infimum is computed with respect to all probability
measures µ supported on E .
If γ(E ) > 0 (i.e., if V (E ) ̸= +∞), then the exists a unique
probability measure µE attaining the infimum of the energy
integral. Furthermore, the support of µE is contained in the
boundary of the unbounded component of Cv \ E .
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The Green function of a compact subset of Cv (continued)

The Green’s function GE (z) of E relative to infinity is a
well-defined nonnegative real-valued subharmonic function on Cv

which is harmonic on Cv \ E . Furthermore,

GE (z) = log |z |v + V (E ) + o(1),

as |z |v → ∞.

If E is the closed unit disk, then γ(E ) = 1 and GE (z) = log+ |z |v .
More importantly, for our generalized Mandelbrot set Mc,v , we
have

GMc,v (z) = lim
n→∞

log+ |f nλ (c(λ))|v
deg(c) · dn

.
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Berkovich adèlic sets

Assume now that for each place v of K , we have a compact subset
Ev of Cv with the property that for all but finitely many places v ,
Ev is the closed unit disk in Cv .

We call

E :=
∏
v

Ev

a Berkovich adèlic set, and define its capacity to be

γ(E) :=
∏
v

γ(Ev )
Nv ,

where the positive integers Nv are the ones defined as in the
product formula on the global field K , i.e., such that for each
nonzero x ∈ K , we would have

∏
v |x |Nv

v = 1.
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Berkovich adèlic sets (continued)

Let Gv = GEv be the Green’s function of Ev relative for each place
v . For every v we fix an embedding K into Cv . Let S ⊂ K be any
finite subset that is invariant under the action of the Galois group
Gal(K/K ).

We define the height hE(S) of S relative to E by

hE(S) =
∑
v

Nv

(
1

|S |
∑
z∈S

Gv (z)

)
.

If each Ev is the closed unit disk in Cv , then the above definition
reduces to the usual notion of the Weil height.
Also, one can prove that the Berkovich adèlic set constructed with
respect to all v -adic generalized Mandelbrot sets has capacity
equal to 1.
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respect to all v -adic generalized Mandelbrot sets has capacity
equal to 1.



. . . . . .
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. . . . . .

The equidistribution statement

Theorem
(Baker, Rumely) Let E be a Berkovich adelic set with γ(E) = 1.
Suppose that Sn is a sequence of Gal(K/K )-invariant finite subsets
of K with |Sn| → ∞ and hE(Sn) → 0 as n → ∞. For each place v
and for each n let δn be the discrete probability measure supported
equally on the elements of Sn. Then the sequence of measures
{δn} converges weakly to µv the equilibrium measure on Ev .

The above equidistribution theorem allows us to finish the proof of
our result.
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Indeed, we construct the Berkovich adèlic sets Ma :=
∏

v Ma,v and
Mb :=

∏
v Mb,v . Then, assuming that there exist infinitely many λ

such that both a(λ) and b(λ) are preperiodic for fλ we obtain
Gal(K/K )-invariant finite subsets Sn of K with |Sn| → ∞ for
which both

hMa(Sn) → 0 and hMb
(Sn) → 0.

Therefore, by the Baker-Rumely equidistribution theorem,
Ma,v = Mb,v for each place v . Then for each place v , using the
fact that Ma,v and Mb,v share the same Green’s function, we
conclude that

ĥλ(a(λ))

deg(a)
= lim

n→∞

log+ |f nλ (a(λ))|v
deg(a)dn

= lim
n→∞

log+ |f nλ (b(λ))|v
deg(b)dn

=
ĥλ(b(λ))

deg(b)
.
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